Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Neurol Sci ; 45(5): 1897-1911, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38182844

RESUMO

Delirium is a common complication in acute stroke patients. A 2011 meta-analysis showed an increased risk of in-hospital mortality and mortality within 12 months post-stroke, longer hospitalization durations, and increased likelihood of being discharged to a nursing home for patients experiencing post-stroke delirium. There is a need for an updated meta-analysis with several new studies having been since published. The PubMed and Scopus databases were screened for relevant studies. Inclusion criteria were as follows: retrospective or prospective studies reporting on the effects of delirium accompanying acute stroke on mortality, functional outcomes, length of hospital stay and need for re-admission. Strength of association was presented as pooled adjusted relative risk (RR) for categorical outcomes and weighted mean difference (WMD) for continuous outcomes. Statistical analysis was done using STATA version 16.0. The meta-analysis included 22 eligible articles. Eighteen of the 22 studies were prospective follow ups. Included studies were of good quality. Post-stroke delirium was associated with increased risk of in-hospital mortality, as well as mortality within 12 months post-stroke. Patients with delirium experienced increased hospital stay durations, were at greater risk for hospital readmission, and showed elevated risk for poor functional outcome. Compared to those who did not have delirium, stroke patients with delirium were 42% less likely to be discharged to home. Acute stroke patients with delirium are at an increased risk for poor short- and long-term outcomes. More research is needed to identify the best set of interventions to manage such patients and improve outcomes.


Assuntos
Delírio , Acidente Vascular Cerebral , Humanos , Estudos Prospectivos , Delírio/epidemiologia , Delírio/etiologia , Estudos Retrospectivos , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/terapia , Hospitalização
2.
J Immunol ; 211(11): 1701-1713, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37843504

RESUMO

Dendritic cells (DCs), a driver of psoriasis pathogenesis, produce IL-23 and trigger IL-23/IL-17 cytokine axis activation. However, the mechanisms regulating IL-23 induction remain unclear. In the current study, we found that mice with E3 ligase FBXW7 deficiency in DCs show reduced skin inflammation correlated with the reduction of IL-23/IL-17 axis cytokines in the imiquimod-induced psoriasis model. Fbxw7 deficiency results in decreased production of IL-23 in DCs. FBXW7 interacts with the lysine N-methyltransferase suppressor of variegation 39 homolog 2 (SUV39H2), which catalyzes the trimethylation of histone H3 Lys9 (H3K9) during transcription regulation. FBXW7 mediates the ubiquitination and degradation of SUV39H2, thus decreasing H3K9m3 deposition on the Il23a promoter. The Suv39h2 knockout mice displayed exacerbated skin inflammation with the IL-23/IL-17 axis overactivating in the psoriasis model. Taken together, our results indicate that FBXW7 increases IL-23 expression in DCs by degrading SUV39H2, thereby aggravating psoriasis-like inflammation. Inhibition of FBXW7 or the FBXW7/SUV39H2/IL-23 axis may represent a novel therapeutic approach to psoriasis.


Assuntos
Dermatite , Psoríase , Animais , Camundongos , Células Dendríticas/metabolismo , Dermatite/patologia , Modelos Animais de Doenças , Epigênese Genética , Proteína 7 com Repetições F-Box-WD/genética , Proteína 7 com Repetições F-Box-WD/metabolismo , Inflamação/metabolismo , Interleucina-17/metabolismo , Interleucina-23/metabolismo , Psoríase/patologia , Pele/patologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
3.
Prev Med ; 173: 107600, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37392788

RESUMO

To explore the efficacy of ultrasound drugs in the treatment of hemiplegia after stroke. The evaluation included clinical symptoms and signs, the Stroke Scale, activities of daily living, sensory disorder Fugl-Meyer and Lindmark, electromyography sensory nerve amplitude, and conduction velocity indexes in both groups. There was no significant difference in the improved Fugl-Meyer and Lindmark score between treatment (26.97 ± 2.78) and the control group (27.45 ± 3.1) (t = 14.528, P = 0.593). After treatment, the observation group (37.10 ± 4.2) was significantly different from the control group (34.76 ± 4.36) (t = 11.259, P = 0.005) and (t = 10.15 ± 1.69), (40.87 ± 6.58) (t = 7.943,9.538, P = 0.564,0.826). After treatment, the observation group the Stroke Scale (4.27 ± 0.57), activities of daily living score (76.15 ± 12.38) and the control group (5.36 ± 0.89), (58.41 ± 9.69) (t = 16.274,5.379, P = 0.035,0.000) after treatment and F wave and M wave. The cure rate of the observation group was 77.50% (31/40), which was significantly better than that of the control group, 47.50% (19/40), with a significant difference (χ2 = 11.724,P = 0.000). After comparison, the total response rate of the observed group reached 92.500% (37 / 40), which was significantly higher than the 80.00% (32 / 40) of the control group. This difference was statistically significant (χ 2 = 9.458, P = 0.015). This therapy closely links the theoretical knowledge of modern medicine with the theoretical knowledge of traditional Chinese medicine, and uses the meridian theory to give full play to the unique advantages of traditional Chinese medicine.


Assuntos
Terapia por Acupuntura , Acidente Vascular Cerebral , Humanos , Atividades Cotidianas , Hemiplegia/tratamento farmacológico , Hemiplegia/etiologia , Preparações de Ação Retardada , Resultado do Tratamento , Acidente Vascular Cerebral/tratamento farmacológico , Tecnologia
4.
Life Sci ; 317: 121439, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36731645

RESUMO

Stress plays a critical role in hair loss, although the underlying mechanisms are largely unknown. γ-aminobutyric acid (GABA) has been reported to be associated with stress; however, whether it affects stress-induced hair growth inhibition is unclear. This study aimed to investigate the potential roles and mechanisms of action of GABA in chronic restraint stress (CRS)-induced hair growth inhibition. We performed RNA-seq analysis and found that differentially expressed genes (DEGs) associated with neuroactive ligand-receptor interaction, including genes related to GABA receptors, significantly changed after mice were treated with CRS. Targeted metabolomics analysis and enzyme-linked immunosorbent assay (ELISA) also showed that GABA levels in back skin tissues and serum significantly elevated in the CRS group. Notably, CRS-induced hair growth inhibition got aggravated by GABA and alleviated through GABAA antagonists, such as picrotoxin and ginkgolide A. RNA sequencing analysis revealed that DEGs related to the cell cycle, DNA replication, purine metabolism, and pyrimidine metabolism pathways were significantly downregulated in dermal papilla (DP) cells after GABA treatment. Moreover, ginkgolide A, a GABAA antagonist extracted from the leaves of Ginkgo biloba, promoted the cell cycle of DP cells. Therefore, the present study demonstrated that the increase in GABA could promote CRS-induced hair growth inhibition by downregulating the cell cycle of DP cells and suggested that ginkgolide A may be a promising therapeutic drug for hair loss.


Assuntos
Ginkgolídeos , Ácido gama-Aminobutírico , Camundongos , Animais , Ácido gama-Aminobutírico/farmacologia , Ginkgolídeos/farmacologia , Cabelo , Alopecia , Folículo Piloso
5.
Life Sci ; 317: 121474, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36746357

RESUMO

AIMS: Atopic dermatitis (AD) is a common chronic inflammatory skin disorder that affects up to 20 % of children and 10 % of adults worldwide; however, the exact molecular mechanisms remain largely unknown. MATERIALS AND METHODS: In this study, we used integrated transcriptomic and metabolomic analyses to study the potential mechanisms of 1-chloro-2,4-dinitrobenzene (DNCB)-induced AD-like skin lesions. KEY FINDINGS: We found that DNCB induced AD-like skin lesions, including phenotypical and histomorphological alterations and transcriptional and metabolic alterations in mice. A total of 3413 differentially expressed metabolites were detected between DNCB-induced AD-like mice and healthy controls, which includes metabolites in taurine and hypotaurine metabolism, phenylalanine metabolism, biosynthesis of unsaturated fatty acids, tryptophan metabolism, arachidonic acid metabolism, pantothenate and CoA biosynthesis, pyrimidine metabolism, and glycerophospholipid metabolism pathways. Furthermore, the differentially expressed genes associated (DEGs) with these metabolic pathways were analyzed using RNA sequencing (RNA-seq), and we found that the expression of pyrimidine metabolism-associated genes was significantly increased. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the glycolysis/gluconeogenesis, glucagon signaling pathway and pentose phosphate pathway-associated metabolic genes were dramatically altered. SIGNIFICANCE: Our results explain the possible mechanism of AD at the gene and metabolite levels and provide potential targets for the development of clinical drugs for AD.


Assuntos
Dermatite Atópica , Dermatopatias , Camundongos , Animais , Dermatite Atópica/induzido quimicamente , Dinitrobenzenos/efeitos adversos , Dinitrobenzenos/metabolismo , Dinitroclorobenzeno , Transcriptoma , Citocinas/metabolismo , Pele/metabolismo , Dermatopatias/metabolismo , Pirimidinas/metabolismo , Camundongos Endogâmicos BALB C
6.
Cell Mol Immunol ; 20(3): 292-304, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36693922

RESUMO

Psoriasis is a common chronic inflammatory skin disease characterized by inflammatory cell infiltration and epidermal hyperplasia. However, the regulatory complexity of cytokine and cellular networks still needs to be investigated. Here, we show that the expression of FXYD3, a member of the FXYD domain-containing regulators of Na+/K+ ATPases family, is significantly increased in the lesional skin of psoriasis patients and mice with imiquimod (IMQ)-induced psoriasis. IL-17A, a cytokine important for the development of psoriatic lesions, contributes to FXYD3 expression in human primary keratinocytes. FXYD3 deletion in keratinocytes attenuated the psoriasis-like phenotype and inflammation in an IMQ-induced psoriasis model. Importantly, FXYD3 promotes the formation of the IL-17R-ACT1 complex by competing with IL-17R for binding to TRAF3 and then enhances IL-17A signaling in keratinocytes. This promotes the activation of the NF-κB and MAPK signaling pathways and leads to the expression of proinflammatory factors. Our results clarify the mechanism by which FXYD3 serves as a mediator of IL-17A signaling in keratinocytes to form a positive regulatory loop to promote psoriasis exacerbation. Targeting FXYD3 may serve as a potential therapeutic approach in the treatment of psoriasis.


Assuntos
Proteínas de Membrana , Proteínas de Neoplasias , Psoríase , Fator 3 Associado a Receptor de TNF , Animais , Humanos , Camundongos , Citocinas/metabolismo , Modelos Animais de Doenças , Imiquimode/efeitos adversos , Imiquimode/metabolismo , Interleucina-17/metabolismo , Queratinócitos , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Psoríase/patologia , Pele/patologia , Fator 3 Associado a Receptor de TNF/metabolismo
7.
Ying Yong Sheng Tai Xue Bao ; 33(5): 1413-1419, 2022 May.
Artigo em Chinês | MEDLINE | ID: mdl-35730101

RESUMO

To understand the population characteristics of Collichthys lucidus, an important economic fish in the Pearl River Estuary, the biological characteristics and resource density distribution characteristics of C. lucidus were preliminarily analyzed using bottom trawling by cruises conducted in each spring and autumn during 2017 and 2020. The results showed that the body length and weight of C. lucidus ranged between 22-168 mm and 0.23-103.11 g, respectively. Female individuals were larger than the male ones. The length of sexually mature individuals intensively ranged between 90 mm and 140 mm. Neither of them evidenced the earlier of sexually maturity nor the minimizer of dominant group. The population of C. lucidus in Pearl River estuary still developed in safe status in all, but its habitat downgraded than in 1988, as indicated by the fact that the allometric growth factor (b=2.9057) of the body length to body weight had no significant annual variations, but the conditional factor (a=3.029×10-5) was drama-tically decreased than in 1988. The population was at a state of overexploitation due to the estimated exploitation rate of 0.67. The resource density averaged 77.73 kg·km-2, showing a pattern of higher in the middle and west than in the east and relatively uniform of latitudinal distribution. The four high densities of sampling zones suggested that the zone around Nansha Port was probably the core of spawning ground of C. lucidus. Considering the annual average resource density in 2017-2020 sharply decreased by 93.5% than in 1980 to 1982, it was pressing to establish the protection zone in spawning ground in spring to protect the recruiting and spawning stocks of C. lucidus population.


Assuntos
Estuários , Perciformes , Animais , China , Ecossistema , Feminino , Peixes , Masculino , Rios
8.
Mol Cell ; 82(9): 1660-1677.e10, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35320754

RESUMO

Tumor-infiltrating myeloid cells (TIMs) are crucial cell populations involved in tumor immune escape, and their functions are regulated by multiple epigenetic mechanisms. The precise regulation mode of RNA N6-methyladenosine (m6A) modification in controlling TIM function is still poorly understood. Our study revealed that the increased expression of methyltransferase-like 3 (METTL3) in TIMs was correlated with the poor prognosis of colon cancer patients, and myeloid deficiency of METTL3 attenuated tumor growth in mice. METTL3 mediated m6A modification on Jak1 mRNA in TIMs, the m6A-YTHDF1 axis enhanced JAK1 protein translation efficiency and subsequent phosphorylation of STAT3. Lactate accumulated in tumor microenvironment potently induced METTL3 upregulation in TIMs via H3K18 lactylation. Interestingly, we identified two lactylation modification sites in the zinc-finger domain of METTL3, which was essential for METTL3 to capture target RNA. Our results emphasize the importance of lactylation-driven METTL3-mediated RNA m6A modification for promoting the immunosuppressive capacity of TIMs.


Assuntos
Metiltransferases , Neoplasias , Adenosina/metabolismo , Animais , Humanos , Terapia de Imunossupressão , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Células Mieloides/metabolismo , RNA , Microambiente Tumoral
9.
Front Mol Biosci ; 9: 781619, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35198601

RESUMO

Psychological stress plays an important role in hair loss, but the underlying mechanisms are not well-understood, and the effective therapies available to regrow hair are rare. In this study, we established a chronic restraint stress (CRS)-induced hair growth inhibition mouse model and performed a comprehensive analysis of metabolomics and transcriptomics. Metabolomics data analysis showed that the primary and secondary metabolic pathways, such as carbohydrate metabolism, amino acid metabolism, and lipid metabolism were significantly altered in skin tissue of CRS group. Transcriptomics analysis also showed significant changes of genes expression profiles involved in regulation of metabolic processes including arachidonic acid metabolism, glutathione metabolism, glycolysis gluconeogenesis, nicotinate and nicotinamide metabolism, purine metabolism, retinol metabolism and cholesterol metabolism. Furthermore, RNA-Seq analyses also found that numerous genes associated with metabolism were significantly changed, such as Hk-1, in CRS-induced hair growth inhibition. Overall, our study supplied new insights into the hair growth inhibition induced by CRS from the perspective of integrated metabolomics and transcriptomics analyses.

10.
J Leukoc Biol ; 112(3): 411-424, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35075687

RESUMO

IL-27 is a member of the IL-12 family, exerting both anti- and pro-inflammatory activity in a cell-dependent and disease context-specific manner. Antigen-mediated cross-linking of IgE on mast cells triggers a signaling cascade that results in mast cell degranulation and proinflammatory cytokine production, which are key effectors in allergic reactions. Here, we show that the activation of mast cells is negatively regulated by IL-27 signaling. We found that mice lacking IL-27Rα (WSX-1) displayed increased sensitivity to IgE-mediated skin allergic response and chronic airway inflammation. The bone marrow-derived mast cells (BMMCs) of IL-27Rα-deficient mouse showed greater high-affinity receptor Fc epsilon RI (FcεRI)-mediated activation with significantly enhanced degranulation and cytokine production. Mechanistically, the dysregulated signaling in IL-27Rα-/- mast cells is associated with increased activation of Grb2-PLC-γ1-SLP-76, PI3K/Akt/IκBα signaling and decreased phosphorylation level of SH2 domain-containing protein phosphatase1 (SHP1). Furthermore, IL-27 treatment could inhibit mast cell activation directly, and retrovirus-based IL-27 expression in lung attenuated the airway inflammation in mice. Collectively, our findings reveal that IL-27 signaling negatively regulates mast cell activation and its mediated allergic response.


Assuntos
Hipersensibilidade , Interleucina-27 , Animais , Degranulação Celular , Hipersensibilidade/metabolismo , Imunoglobulina E/metabolismo , Inflamação/metabolismo , Interleucina-27/metabolismo , Mastócitos/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Receptores de IgE/metabolismo
11.
DNA Cell Biol ; 40(10): 1325-1337, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34582699

RESUMO

Psoriasis is a chronic inflammatory skin disease characterized by massive keratinocyte proliferation and immune cell infiltration into the epidermis. However, the specific mechanisms underlying the development of psoriasis remain unclear. Untargeted metabolomics and transcriptomics have been used separately to profile biomarkers and risk genes in the serum of psoriasis patients. However, the integration of metabolomics and transcriptomics to identify dysregulated metabolites and genes in the psoriatic skin is lacking. In this study, we performed an untargeted metabolomics analysis of imiquimod (IMQ)-induced psoriasis-like mice and healthy controls, and found that levels of a total of 4,188 metabolites differed in IMQ-induced psoriasis-like mice compared with those in control mice. Metabolomic data analysis using MetaboAnalyst showed that the metabolic pathways of primary metabolites, such as folate biosynthesis and galactose metabolism, were significantly altered in the skin of mice after treatment with IMQ. Furthermore, IMQ treatment also significantly altered metabolic pathways of secondary metabolites, including histidine metabolism, in mouse skin tissues. The metabolomic results were verified by transcriptomics analysis. RNA-seq results showed that histamine decarboxylase (HDC) mRNA levels were significantly upregulated after IMQ treatment. Targeted inhibition of histamine biosynthesis process using HDC-specific inhibitor, pinocembrin (PINO), significantly alleviated epidermal thickness, downregulated the expression of interleukin (IL)-17A and IL-23, and inhibited the infiltration of immune cells during IMQ-induced psoriasis-like skin inflammation. In conclusion, our study offers a validated and comprehensive understanding of metabolism during the development of psoriasis and demonstrated that PINO could protect against IMQ-induced psoriasis-like skin inflammation.


Assuntos
Histidina/metabolismo , Metaboloma , Psoríase/metabolismo , Transcriptoma , Animais , Feminino , Imiquimode/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Psoríase/etiologia , Psoríase/genética
12.
Front Pharmacol ; 12: 719842, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34381369

RESUMO

Psoriasis, the most common skin inflammatory disease, is characterized by massive keratinocyte proliferation and immune cell infiltration into epidermis. L-Theanine (L-THE), a nonproteinogenic amino acid derived from green tea (Camellia sinensis), has been proved to possess the properties of anti-inflammatory, antidepressants and neuroprotective. However, whether L-THE has a therapeutic effect on psoriasis is still unknown. In this study, we found that the epidermal thickness and inflammatory response were significantly reduced in Imiquimod (IMQ)-induced psoriasis mice by applying with L-THE on mice skin. The expression of proliferation and inflammation associated genes such as keratin 17, IL-23 and CXCL1-3 was also downregulated by L-THE. Furthermore, L-THE inhibited the production of IL-23 in dendritic cells (DCs) after IMQ treatment, and decreased the levels of chemokines in keratinocytes treated with IL-17A by downregulating the expression of IL-17RA. RNA-seq and KEGG analysis revealed that L-THE significantly regulated the expression of IL-17A and NF-κB signaling pathway-associated genes. Metabolomics analysis displayed that L-THE promoted propanoate metabolism which has been reported to inhibit the activity of TH17 cells. Therefore, our results demonstrated that L-THE significantly decreases the levels of IL-23 and chemokines, and attenuates IMQ-induced psoriasis like skin inflammation by inhibiting the activation of NF-κB and IL-17A signaling pathways, and promoting the propanoate metabolism. Our findings suggest that topical applied L-THE can be used as a topical drug candidate for the treatment of psoriasis or as an adjuvant treatment of ustekinumab or secukinumab to prevent the relapse of psoriasis.

13.
Front Med (Lausanne) ; 8: 689568, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34222293

RESUMO

Objective: Early identification of coronavirus disease 2019 (COVID-19) patients with worse outcomes may benefit clinical management of patients. We aimed to quantify pneumonia findings on CT at admission to predict progression to critical illness in COVID-19 patients. Methods: This retrospective study included laboratory-confirmed adult patients with COVID-19. All patients underwent a thin-section chest computed tomography (CT) scans showing evidence of pneumonia. CT images with severe moving artifacts were excluded from analysis. Patients' clinical and laboratory data were collected from medical records. Three quantitative CT features of pneumonia lesions were automatically calculated using a care.ai Intelligent Multi-disciplinary Imaging Diagnosis Platform Intelligent Evaluation System of Chest CT for COVID-19, denoting the percentage of pneumonia volume (PPV), ground-glass opacity volume (PGV), and consolidation volume (PCV). According to Chinese COVID-19 guidelines (trial version 7), patients were divided into noncritical and critical groups. Critical illness was defined as a composite of admission to the intensive care unit, respiratory failure requiring mechanical ventilation, shock, or death. The performance of PPV, PGV, and PCV in discrimination of critical illness was assessed. The correlations between PPV and laboratory variables were assessed by Pearson correlation analysis. Results: A total of 140 patients were included, with mean age of 58.6 years, and 85 (60.7%) were male. Thirty-two (22.9%) patients were critical. Using a cutoff value of 22.6%, the PPV had the highest performance in predicting critical illness, with an area under the curve of 0.868, sensitivity of 81.3%, and specificity of 80.6%. The PPV had moderately positive correlation with neutrophil (%) (r = 0.535, p < 0.001), erythrocyte sedimentation rate (r = 0.567, p < 0.001), d-Dimer (r = 0.444, p < 0.001), high-sensitivity C-reactive protein (r = 0.495, p < 0.001), aspartate aminotransferase (r = 0.410, p < 0.001), lactate dehydrogenase (r = 0.644, p < 0.001), and urea nitrogen (r = 0.439, p < 0.001), whereas the PPV had moderately negative correlation with lymphocyte (%) (r = -0.535, p < 0.001). Conclusions: Pneumonia volume quantified on initial CT can non-invasively predict the progression to critical illness in advance, which serve as a prognostic marker of COVID-19.

14.
Front Immunol ; 12: 642715, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815396

RESUMO

A systematic and flexible immunoregulatory network is required to ensure the proper outcome of antiviral immune signaling and maintain homeostasis during viral infection. Tumor necrosis factor-α-induced protein 8-like 2 (TIPE2), a novel immunoregulatory protein, has been extensively studied in inflammatory response, apoptosis, and cancer. However, the function of TIPE2 in antiviral innate immunity is poorly clarified. In this study, we reported that the expression of TIPE2 declined at the early period and then climbed up in macrophages under RNA virus stimulation. Knockout of TIPE2 in the macrophages enhanced the antiviral capacity and facilitated type I interferon (IFN) signaling after RNA viral infection both in vitro and in vivo. Consistently, overexpression of TIPE2 inhibited the production of type I IFNs and pro-inflammatory cytokines, and thus promoted the viral infection. Moreover, TIPE2 restrained the activation of TBK1 and IRF3 in the retinoic acid inducible gene-I (RIG-I)-like receptors (RLR) signaling pathway by directly interacting with retinoic acid inducible gene-I (RIG-I). Taken together, our results suggested that TIPE2 suppresses the type I IFN response induced by RNA virus by targeting RIG-I and blocking the activation of downstream signaling. These findings will provide new insights to reveal the immunological function of TIPE2 and may help to develop new strategies for the clinical treatment of RNA viral infections.


Assuntos
Proteína DEAD-box 58/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Macrófagos/imunologia , Infecções por Vírus de RNA/imunologia , Receptores Imunológicos/fisiologia , Fator de Necrose Tumoral alfa/farmacologia , Animais , Células Cultivadas , Humanos , Imunidade Inata , Interferon Tipo I/antagonistas & inibidores , Interferon Tipo I/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Replicação Viral
15.
J Thorac Dis ; 13(2): 1215-1229, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33717594

RESUMO

BACKGROUND: To develop machine learning classifiers at admission for predicting which patients with coronavirus disease 2019 (COVID-19) who will progress to critical illness. METHODS: A total of 158 patients with laboratory-confirmed COVID-19 admitted to three designated hospitals between December 31, 2019 and March 31, 2020 were retrospectively collected. 27 clinical and laboratory variables of COVID-19 patients were collected from the medical records. A total of 201 quantitative CT features of COVID-19 pneumonia were extracted by using an artificial intelligence software. The critically ill cases were defined according to the COVID-19 guidelines. The least absolute shrinkage and selection operator (LASSO) logistic regression was used to select the predictors of critical illness from clinical and radiological features, respectively. Accordingly, we developed clinical and radiological models using the following machine learning classifiers, including naive bayes (NB), linear regression (LR), random forest (RF), extreme gradient boosting (XGBoost), adaptive boosting (AdaBoost), K-nearest neighbor (KNN), kernel support vector machine (k-SVM), and back propagation neural networks (BPNN). The combined model incorporating the selected clinical and radiological factors was also developed using the eight above-mentioned classifiers. The predictive efficiency of the models is validated using a 5-fold cross-validation method. The performance of the models was compared by the area under the receiver operating characteristic curve (AUC). RESULTS: The mean age of all patients was 58.9±13.9 years and 89 (56.3%) were males. 35 (22.2%) patients deteriorated to critical illness. After LASSO analysis, four clinical features including lymphocyte percentage, lactic dehydrogenase, neutrophil count, and D-dimer and four quantitative CT features were selected. The XGBoost-based clinical model yielded the highest AUC of 0.960 [95% confidence interval (CI): 0.913-1.000)]. The XGBoost-based radiological model achieved an AUC of 0.890 (95% CI: 0.757-1.000). However, the predictive efficacy of XGBoost-based combined model was very close to that of the XGBoost-based clinical model, with an AUC of 0.955 (95% CI: 0.906-1.000). CONCLUSIONS: A XGBoost-based based clinical model on admission might be used as an effective tool to identify patients at high risk of critical illness.

16.
Nat Commun ; 12(1): 759, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33536421

RESUMO

The malignancy of colorectal cancer (CRC) is connected with inflammation and tumor-associated macrophages (TAMs), but effective therapeutics for CRC are limited. To integrate therapeutic targeting with tumor microenvironment (TME) reprogramming, here we develop biocompatible, non-covalent channel-type nanoparticles (CNPs) that are fabricated through host-guest complexation and self-assemble of mannose-modified γ-cyclodextrin (M-γ-CD) with Regorafenib (RG), RG@M-γ-CD CNPs. In addition to its carrier role, M-γ-CD serves as a targeting device and participates in TME regulation. RG@M-γ-CD CNPs attenuate inflammation and inhibit TAM activation by targeting macrophages. They also improve RG's anti-tumor effect by potentiating kinase suppression. In vivo application shows that the channel-type formulation optimizes the pharmacokinetics and bio-distribution of RG. In colitis-associated cancer and CT26 mouse models, RG@M-γ-CD is proven to be a targeted, safe and effective anti-tumor nanomedicine that suppresses tumor cell proliferation, lesions neovascularization, and remodels TME. These findings indicate RG@M-γ-CD CNPs as a potential strategy for CRC treatment.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Nanopartículas/administração & dosagem , Neoplasias Experimentais/tratamento farmacológico , Compostos de Fenilureia/administração & dosagem , Piridinas/administração & dosagem , gama-Ciclodextrinas/administração & dosagem , Animais , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HT29 , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Manose/química , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Nanopartículas/química , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Compostos de Fenilureia/química , Piridinas/química , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética , gama-Ciclodextrinas/química
17.
Front Immunol ; 12: 760138, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069531

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a group of chronic interstitial pulmonary diseases characterized by an inexorable decline in lung function with limited treatment options. The abnormal expression of transforming growth factor-ß (TGF-ß) in profibrotic macrophages is linked to severe pulmonary fibrosis, but the regulation mechanisms of TGF-ß expression are incompletely understood. We found that decreased expression of E3 ubiquitin ligase Fbxw7 in peripheral blood mononuclear cells (PBMCs) was significantly related to the severity of pulmonary fibrosis in IPF patients. Fbxw7 is identified to be a crucial suppressing factor for pulmonary fibrosis development and progression in a mouse model induced by intratracheal bleomycin treatment. Myeloid cell-specific Fbxw7 deletion increases pulmonary monocyte-macrophages accumulation in lung tissue, and eventually promotes bleomycin-induced collagen deposition and progressive pulmonary fibrosis. Notably, the expression of TGF-ß in profibrotic macrophages was significantly upregulated in myeloid cell-specific Fbxw7 deletion mice after bleomycin treatment. C-Jun has long been regarded as a critical transcription factor of Tgfb1, we clarified that Fbxw7 inhibits the expression of TGF-ß in profibrotic macrophages by interacting with c-Jun and mediating its K48-linked ubiquitination and degradation. These findings provide insight into the role of Fbxw7 in the regulation of macrophages during the pathogenesis of pulmonary fibrosis.


Assuntos
Proteína 7 com Repetições F-Box-WD/imunologia , Fibrose Pulmonar Idiopática/imunologia , Pulmão/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Fator de Crescimento Transformador beta/imunologia , Animais , Proteína 7 com Repetições F-Box-WD/genética , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/patologia , Pulmão/patologia , Macrófagos/patologia , Camundongos , Camundongos Transgênicos , Monócitos/patologia , Fator de Crescimento Transformador beta/genética
18.
Cell Mol Immunol ; 18(6): 1450-1462, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-31767975

RESUMO

Innate immunity plays a prominent role in the host defense against pathogens and must be precisely regulated. As vital orchestrators in cholesterol homeostasis, microRNA-33/33* have been widely investigated in cellular metabolism. However, their role in antiviral innate immunity is largely unknown. Here, we report that VSV stimulation decreased the expression of miR-33/33* through an IFNAR-dependent manner in macrophages. Overexpression of miR-33/33* resulted in impaired RIG-I signaling, enhancing viral load and lethality whereas attenuating type I interferon production both in vitro and in vivo. In addition, miR-33/33* specifically prevented the mitochondrial adaptor mitochondrial antiviral-signaling protein (MAVS) from forming activated aggregates by targeting adenosine monophosphate activated protein kinase (AMPK), subsequently impeding the mitophagy-mediated elimination of damaged mitochondria and disturbing mitochondrial homeostasis which is indispensable for efficient MAVS activation. Our findings establish miR-33/33* as negative modulators of the RNA virus-triggered innate immune response and identify a previously unknown regulatory mechanism linking mitochondrial homeostasis with antiviral signaling pathways.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenilato Quinase/metabolismo , Imunidade Inata , MicroRNAs/metabolismo , Vesiculovirus/imunologia , Animais , Antagomirs/farmacologia , Sequência de Bases , Proteína DEAD-box 58/metabolismo , Regulação para Baixo/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Células HEK293 , Células HeLa , Humanos , Imunidade Inata/efeitos dos fármacos , Interferon Tipo I/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Macrófagos/virologia , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Mitofagia/efeitos dos fármacos , Modelos Biológicos , Agregados Proteicos/efeitos dos fármacos , Receptor de Interferon alfa e beta/metabolismo , Receptores Imunológicos/metabolismo , Transdução de Sinais/efeitos dos fármacos
19.
Aging (Albany NY) ; 12(23): 24394-24423, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33260160

RESUMO

FBXW7 functions as an E3 ubiquitin ligase to mediate oncoprotein degradation via the ubiquitin-proteasome system in cancer cells, effectively inhibiting the growth and survival of tumor cells. However, little is known about the functions of FBXW7 in macrophages and the tumor immune microenvironment. In this study, we find that FBXW7 suppresses M2-like tumor-associated macrophage (TAM) polarization to limit tumor progression. We identified a significant increase in the proportion of M2-like TAMs and aggravated tumor growth in mice with myeloid FBXW7 deficiency by subcutaneous inoculation with Lewis lung carcinoma cells (LLCs). When stimulated with LLCs supernatant in vitro, FBXW7-knockout macrophages displayed increased M2 macrophage polarization and enhanced ability of supporting cancer cells growth. In mechanism, we confirmed that FBXW7 inhibited M2-like TAM polarization by mediating c-Myc degradation via the ubiquitin-proteasome system. These findings highlight the role of FBXW7 in M2-like TAM polarization and provide new insights into the potential targets for cancer immunotherapies.


Assuntos
Carcinoma Pulmonar de Lewis/enzimologia , Proteína 7 com Repetições F-Box-WD/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Macrófagos Associados a Tumor/enzimologia , Animais , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/patologia , Proliferação de Células , Células Cultivadas , Proteína 7 com Repetições F-Box-WD/deficiência , Proteína 7 com Repetições F-Box-WD/genética , Regulação Neoplásica da Expressão Gênica , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Proteínas Proto-Oncogênicas c-myc/genética , Transdução de Sinais , Carga Tumoral , Microambiente Tumoral , Macrófagos Associados a Tumor/patologia , Ubiquitinação
20.
Front Oncol ; 10: 578985, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33224880

RESUMO

PURPOSE: In this study, we aimed to use 3T magnetic resonance imaging (MRI), which is clinically available, to determine the extracellular pH (pHe) of liver tumors and prospectively evaluate the ability of chemical exchange saturation transfer (CEST) MRI to distinguish between benign and malignant liver tumors. METHODS: Different radiofrequency irradiation schemes were assessed for ioversol-based pH measurements at 3T. CEST effects were quantified in vitro using the asymmetric magnetization transfer ratio (MTRasym) at 4.3 ppm from the corrected Z spectrum. Generalized ratiometric analysis was conducted by rationing resolved ioversol CEST effects at 4.3 ppm at a flip angle of 60 and 350°. Fifteen patients recently diagnosed with hepatic carcinoma and five patients diagnosed with hepatic hemangioma [1 male; mean age, 48.6 (range, 37-59) years] were assessed. RESULTS: By conducting dual-power CEST MRI, the pH of solutions was determined to be 6.0-7.2 at 3T in vitro. In vivo, ioversol signal intensities in the tumor region showed that the extracellular pH in hepatic carcinoma was acidic(mean ± standard deviation, 6.66 ± 0.19), whereas the extracellular pH was more physiologically neutral in hemangioma (mean ± standard deviation, 7.34 ± 0.09).The lesion size was similar between CEST pH MRI and T2-weighted imaging. CONCLUSION: dual-power CEST MRI can detect extracellular pH in human liver tumors and can provide molecular-level diagnostic tools for differentiating benign and malignant liver tumors at 3T.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...